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Figure 1: We propose TreeReward, including feedback data scaling up, and tree-structured feedback tuning, to achieve fine-
grained feedback learning for diffusion models and achieve superior performance under various fine-grained evaluation
settings. We consider the fine-grained aspects including Content, Style, Color, Lighting, Detail, and Layout. The radar chart
exhibits the fine-grained performance improvement comparison over the baseline (SD1.5). In this chart, the baseline value is
anchored at 5, and the value range is rescaled from [-5, 5] to [0, 10] accordingly.

Abstract

Recently, there has been significant progress in leveraging human
feedback to enhance diffusion-based image generation, garnering
considerable interest and attention. However, existing methods fail
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to achieve a fine-grained performance boost for the following chal-
lenges: i) insufficient amount of fine-grained feedback data; ii) lack
of effective fine-grained feedback learning framework; To tackle
these challenges, we present TreeReward to facilitate the fine-
grained feedback optimization for diffusion models. Specifically, to
address the limitation of the fine-grained feedback data, we first
design a novel "Al + Expert" feedback data construction pipeline,
yielding about 2.2M high-quality feedback dataset encompassing
six fine-grained dimensions at a relatively low cost. Built upon this
dataset, we introduce a tree-structure reward model to exploit the
fine-grained feedback data efficiently and provide tailored optimiza-
tion during feedback learning. We validate the feedback learning
performance of our method across different fine-grained dimen-
sions and various downstream tasks. Extensive experiments on both
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Stable Diffusion v1.5 (SD1.5) and Stable Diffusion XL (SDXL) demon-
strate the effectiveness of our method in enhancing the general and
fine-grained generation and downstream tasks generalization.
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1 Introduction

Reinforcement learning from human feedback (RLHF)[1, 24, 26],
a technique that incorporates human feedback as the supervision
signal and aligns the generation model with the human prefer-
ence via reinforcement learning methods, has achieved significant
advancement in the realm of large language models (LLM) as in-
dicated by notable studies such as LLaMA, GPT-4[1, 24, 26, 39, 46]
etc. Recently, some works[43, 44] have emerged to explore apply-
ing similar methodologies in the diffusion-based image generation
field, aligning the generated images with human preferences. For
example, DDPO[2] applies the reinforcement learning algorithm
PPO[38] to align the diffusion model with the given reward func-
tion by treating the diffusion process as a Markov decision pro-
cess(MDP). ImageReward[44] develop a direct preference tuning
framework for latent diffusion model(LDM), which first trains a
reward model on the collected human preference dataset to align
with human preference then directly fine-tune the LDM with the
reward score guidance within certain denoising timestep range.
However, despite these advancements, the diffusion models that in-
tegrate these human feedback learning methods still exhibit inferior
generation quality in some fine-grained dimensions, for example,
generating images with a style not consistent with the prompt or
images with unattractive composition. This is because these feed-
back learning methods lack such fine-grained feedback learning
signals to achieve more targeted optimization. A natural question
arises, Could we achieve fine-grained feedback learning for LDM? Af-
ter looking closely at this question, we find several challenges exist:
(i) Insufficient fine-grained feedback data: Current methods generally
collect the coarse feedback data(better&worse) without distinguish-
ing which fine-grained dimension has cared. Although ImageRe-
ward annotates both the text-to-image alignment and aesthetics
for the preference dataset, the aesthetic dimension is still highly
coarse and abstract, and the dataset volume is also limited(only
123k). Such limitation on the fine-grained preference feedback data
makes it inadequate to capture the diverse range of human prefer-
ences. Nonetheless, gathering large-scale fine-grained preference
data is labor-intensive and costly. (ii) No effective fine-grained feed-
back learning framework: Most existing methods only involve a
single reward model, without the effective practice of modeling
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multiple fine-grained preferences. Although we can simply train
a separate reward model for each dimension, it cannot exploit the
relationship between different dimensions and is also unscalable
when increasing the fine-grained dimension. To tackle these issues,
we propose a fine-grained feedback-learning method, TreeReward,
for LDM. For the lack of fine-grained feedback data, we consider
the commonly six fine-grained dimensions(i.e. style, content, color,
lighting, detail, and layout), and design an "AI + Expert" feedback
data generation pipeline that incorporates both the automatic data
generation and the human preference annotation according to their
distinct properties to enable feedback data scale-up in a low-cost
manner. Given such a large-scale curated feedback dataset, we fur-
ther develop a novel tree-structured reward model. It organizes
the fine-grained feedback dimension hierarchically according to
their affiliation relationship and employs the random sample ensem-
ble training strategy to effectively integrate multiple fine-grained
feedback-scoring abilities into a single reward model. Such designs
enjoy several merits, first, the prior knowledge of these fine-grained
dimensions is encoded via such tree structure and can facilitate the
efficient multi-dimension reward model training. second, during
reward tuning, the reward scores from all the leaf nodes are aggre-
gated adaptively, offering the case-tailored feedback signal for more
effective optimization. Extensive experiments demonstrate the su-
periority of our method in enhancing the generation performance
of both general quality and fine-grained dimensions. Furthermore,
it exhibits exceptional performance in downstream tasks, validating
its robustness and generalization.
Our contributions are summarized as follows:

e We develop an efficient feedback data curation pipeline in "Al
+ Expert" fashion to generate large-scale fine-grained feed-
back data at low cost, finally yielding about 2.2M feedback
dataset which is the largest dataset in the field.

e We design an innovative tree-structure reward model to en-
able efficient multi-dimensional, and fine-grained feedback
modeling, and achieve more effective reward tuning.

o Extensive experiments on both SD1.5 and SDXL validate
the effectiveness of our method, demonstrating its superior
generation optimization and generalization capability.

2 Related Works

2.1 Text-to-Image Generation

As the representative topic in the Artificial Intelligence Gener-
ated Content(AIGC)[3, 19, 24, 25, 29, 32, 40, 41, 47, 51] area, text-
to-image(T2I) generation, a task that aims to synthesize the im-
age given a textual description, has become a prominent research
field with various applications, attracting significant attention com-
pared with the conventional vision tasks[17, 18, 48-50]. In the past
decades, the methodology for T2I generation has gone through
from auto-regressive model[5, 7, 30], GAN models[8, 13, 14] to dif-
fusion models(DMs)[9, 23, 35, 52]. Among these, diffusion models[4,
11, 21, 23, 29, 33], generating samples via progressive denoising a
Gaussian noise, have recently emerged as the defacto mainstream
technique for T2I synthesis due to their impressive generation ca-
pabilities as indicated by several notable pioneering studies such as
DALLE-2[29], ImageGen[36], and Latent Diffusion Models[28, 33].
However, despite these advancements, diffusion-based T2I models
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still struggle to generate high-quality images across various fine-
grained dimensions, for instance, images with rich and harmonious
colors as well as a reasonable layout.

2.2 Learning from Human Feedback

To enhance the generation performance of the large generative
models, researchers have proposed human feedback learning[1, 6,
24, 26, 45] to utilize the human preference signal to align model
performance with human preference, and have already validated
its effectiveness in the works like ChatGPT[25]. It first trains a
reward model based on the annotated human preference data, then
fine-tune the generative models via the reinforcement learning al-
gorithm like PPO[38]. Inspired by the success in the LLM domain,
several works have endeavored to incorporate human feedback
into the learning process of diffusion models to better understand
human preferences. DDPO [2] adopts a reinforcement learning
framework to align diffusion model generation with the supervi-
sion provided by an additional reward function. Approaches like
HPS[42, 43] employ a separate reward model trained on curated
human preference datasets to filter eligible preferred data for fine-
tuning stable diffusion. Another approach, Reward Weighting[16],
utilizes reward-weighted likelihood as the optimization objective.
Recently, ImageReward[44] proposes the ReFL training framework
to direct fine-tune stable diffusion via a differentiable reward model.
While effective, most of these feedback learning methods rely on a
general reward model trained on coarse human preference datasets,
limiting their ability to provide fine-grained preference guidance. In
this paper, we address these limitations by curating a fine-grained
human preference dataset. Building upon this dataset, we propose a
tree-structured reward model that offers more effective and flexible
reward supervision for diffusion models.

3 Preliminary
3.1 Text-to-Image Diffusion Model

Diffusion-based T2I model formulates image generation as a diffu-
sion and denoising process, it generates high-quality images under
the text prompt guidance via gradual denoising from Gaussian
noise. During training, a sampled image x is first encoded by a
pre-trained VAE encoder to derive its latent representation z. Sub-
sequently, random noise is injected into the latent representation
through a forward diffusion process, following a predefined sched-
ule {ﬁt}T. This process can be formulated as z; = Va;z+ V1 — aye,
where € € N(0, 1) is the random noise with identical dimension to
z,0r = Hé:l as and a; = 1 — f; are the predefined noise schedule.
To achieve the denoising process, a UNet €y is trained to predict
the added noise in the forward diffusion process, conditioned on
the noised latent and the text prompt c. Formally, the optimization
objective of the UNet is:

L(0) =Ezecrellle - eg(Narz+V1-mec izl (1)
During inference, starting from a pure Gaussian noise in the latent,
it gradually denoises the noisy latent with the noise predicted via
the UNet until getting a clean denoised image after decoding.
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3.2 Reward Feedback Learning

Reward feedback learning(ReFL) [44] is a preference fine-tuning
framework that aims to improve the diffusion model via human
preference feedback. It primarily includes two phases: (1) Reward
Model Training and (2) Preference Fine-tuning. In the Reward Model
Training phase, human preference data is collected to train a hu-
man preference reward model to capture human preferences. More
specifically, considering two collected candidate generations with
preference annotation, denoted as x,, (preferred generation) and x;
(unpreferred one). The reward model is encouraged to give a higher
reward score for the preferred sample x,, while a lower score for
the x;. Formally, the loss used to train the human preference reward
model ry can be formulated as follows:

LOrm = By )~ 10g(0(rg(e.x) = ro(cx)))], (2)
where D denotes the collected preference feedback data, o(-) rep-
resents the sigmoid function, and ¢ corresponds to the text prompt.
With this training objective, reward model ry is optimized to pro-
duce a human preference-aligned score. In the Preference Fine-
tuning stage, ReFL begins with an input prompt c, initializing a la-
tent variable x7 at random. The latent variable is first progressively
denoised until reaching a randomly selected timestep ¢ € [t1, f2]
and a denoised image x|, is directly predicted from x;. After that,
the pretrained reward model in the previous phase is applied to
this denoised image, generating the expected reward score rg(c, x;).
The diffusion model is then fine-tuned to increase the reward score
for each sample with the objective:

LOref1 = Eenp(e)Bxtp(xgle) [-1 (x5, O] ®3)

4 Al + Expert Feedback Data Scaling

An essential challenge to achieving fine-grained feedback learning
for the diffusion model lies in the construction of a high-quality
dataset of fine-grained human feedback. Although there are already
some available feedback datasets, such as the ImageReward[44]
and Pickascore[15], these datasets often suffer from coarse feed-
back annotation and limited data volume. However, collecting large
amounts of fine-grained human feedback data is time-consuming
and expensive. To tackle this issue, we design an efficient pipeline
to enable large-scale fine-grained feedback data construction at
low cost via automatic strategies. The core insight of our design
is not all feedback data on each aspect requires accurate human an-
notation and we can combine the automatic data generation with
manual human annotation to reduce the cost of the data construction.
Through this efficient pipeline, we collect about 2.2M feedback data
across six fine-grained dimensions, covering both the semantic and
aesthetic aspects. The comparison between our collected feedback
data and the existing dataset is summarized in Tab.1.

4.1 Feedback Data on Semantics Alignment

One important desired property of a text-to-image diffusion model
is semantic alignment, which requires the generated image to align
closely with the text prompt in semantics. Instead of treating the
semantic alignment as a whole [44], we propose to decouple the
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Name Annotator Data Format Prompt Source Image Source #Dim. | # Prompt | # Pairs
HPS [43] Discord users | Top-1 choice Discord users Stable Diffusion 1 25k 25k
ImageReward [44] Expert Pairwise DiffusionDB DiffusionDB 1 9k 137k
PickScore [15] Web users Pairwise Web users 4 Models 1 38k 584k
HPSv2 [42] Expert Pairwise DiffusionDB* 9 Models + real photo 1 108k 798k
Ours Al + Expert Pairwise DiffusionDB* + Web users | 15 Models + real photo 6 400k 2.2M

Table 1: Comparison with other datasets. *

indicates that the data has been filtered. Our data covers 6 fine-grained dimensions.
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Figure 2: The overview of our "Al + Expert" fine-grained feedback data construction pipeline. We design the automation-assisted
data construction strategies for each dimension to enable the fine-grained feedback data scale-up at a low cost.

semantic alignment further into style alignment(consistent styliza-
tion) and content alignment(aligned entities and relationship) to
aid more targeted alignment in semantics.

Style Alignment Feedback Data. It encourages the model to gen-
erate the image in the style specified in the prompt. To achieve this,
we develop a contrastive data sample strategy to construct the style
feedback data as depicted in Fig.2. Specifically, we initially collect a
diverse set of approximately 500 commonly used target style words
from the real user prompts(e.g. prompt in the JourneyDB[27]). Sub-
sequently, given a prompt containing a particular target style word,
we randomly substitute the target style word with another word
from the vocabulary. Then, we generated two images with the orig-
inal prompt and the replaced prompt. Hence, the image generated
by the original prompt could serve as a positive sample, whereas
the image generated by the randomly substituted style word acts as
a negative sample. This is because even though the model cannot
fully render the target style, the image generated by the specified
style in the prompt will exhibit the stylization toward the target
style to a certain degree, which in turn consists of the relative style
contrast. To ensure the quality of these feedback data, we exploit
the state-of-the-art(SOTA) diffusion model to generate images, such
as SDXL[28] and Kindmisky[31]. By employing this methodology,
we collect detailed style feedback data that assist in training the
diffusion model to accurately capture the desired style.

Content Alignment Feedback Data. Given the input prompt,
the diffusion model is expected to generate all the entities and at-
tributes&relationship mentioned in the input prompts accurately.
As depicted in Fig.2, we introduce a recaption strategy to curate such
kinds of feedback data with two steps. i) Identifying Misaligned Ex-
amples: We utilized the clip model to identify image-text pairs in the
LAION dataset where the clip score fell below a certain threshold.
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These pairs were considered instances of poor content alignment
and sent to re-caption. ii) Generating Detailed Image Descriptions:
Given these misaligned text-image pairs, instead of generating a
more aligned image(more costly), we inversely re-generate a more
aligned prompt via advanced multimodal large language models
(MLLMs) such as LLaVA[20]. After that, we considered the image
with the original caption and the regenerated caption from the
MLLM as the negative and positive sample for content alignment
respectively as the regenerated caption tends to be more detailed
and accurate with better content alignment.

4.2 Feedback Data on Aesthetics Quality

The aesthetic quality is another critical aspect of the generation
performance of the diffusion model. Most of the existing methods
only consider coarse aesthetic preference. However, the abstract
aesthetic concept contains various dimensions, such as color, light-
ing, layout, and details, making it challenging for the reward model
to grab the aesthetic essence and take the risk of optimization con-
flict during feedback tuning with such a coarse reward model as
analyzed in [41]. To address this limitation, we propose to decouple
the aesthetic into more fine-grained dimensions and collect the
corresponding feedback data.

Fine-grained Aesthetic Feedback Data. According to the com-
mon criterion, we consider several fine-grained dimensions for
aesthetics: color, lighting, layout, and details, and collect the cor-
responding feedback data. Generally, we generate several images
with a T2I diffusion model given a particular prompt and then ask
the annotator to select the preferred and unpreferred sample. How-
ever, the ordinary image pair generated by a text-to-image diffusion
model of the same prompt tends to have a similar aesthetic quality,
making it challenging to give an assessment and requiring much
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Figure 3: The overview of our TreeReward, a tree-structured reward model trained with vast high-quality fined-grained
preference data to facilitate more effective feedback learning for text-to-image generative models.

more time to distinguish the preferred sample. To this end, we pro-
pose two strategies to ease the human annotation burden during
feedback data generation. (i) To make the generation quality on a
particular dimension more prominent, we manually curate a set of
trigger words for each aesthetic dimension. For instance, we set the
trigger words like "Soft lighting," "Side lighting," and "rim lighting'
for lighting dimension. (ii) To reduce the annotation time cost, we
manually create the sample with aesthetic differences as depicted
in Fig.2. On one hand, we utilize diffusion models with varying
generative capabilities to generate the image pair. For example, we
take the image generated by SDXL[28] and its improved version
Kindminsky[31]. On the other hand, we take the images generated
at different denoised timesteps to assist the fast preference annota-
tion. These designs make the candidate images exhibit more clearer
performance gap to be captured, facilitating fast annotation. With
these two strategies applied, we can achieve efficient fine-grained
aesthetic feedback data annotation.

5 Tree-Structured Feedback Learning

Through the proposed "Al + Expert" feedback data construction
pipeline, we finally curate a large-scale(~2.2M) fine-grained feed-
back data spanning six dimensions. The next question is how to
utilize these datasets efficiently. There are two simple ways to utilize
these datasets: (1) Treat these datasets as a whole and train a global
reward model. (2) Train a separate reward model for each dimension.
However, these ways either overlook the difference between these
dimensions or ignore the inherent prior knowledge about these
dimensions, which results in sub-optimal feedback tuning results as
shown by our experiments. To this end, we introduce TreeReward,
to combine these fine-grained feedback data efficiently and provide
fine-grained and adaptive preference guidance during fine-tuning.
Fig.3 shows the TreeReward training and preference fine-tuning
process, which will be explained in the following sections.

5.1 TreeReward Training

Tree Structure Reward: We take a hard-coded tree structure to
organize these preference rewards. Generally, we group these di-
mensions accordingly as semantic aspect(i.e. style, content) and
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aesthetic aspect(i.e. color, lighting, detail, layout), and design a hi-
erarchical structure comprised of two internal nodes and six leaf
nodes. The role of the internal nodes is to determine which general
aspect (semantic or aesthetic) to reward, while the leaf nodes are
responsible for providing precise reward scores along fine-grained
dimensions. In line with ImageReward[44], we implement TreeRe-
ward with the BLIP model as the backbone, which employs ViT-L14
as the image encoder and a 12-layer transformer as the text en-
coder. For the internal node and leaf node of our TreeReward, we
implement them with simple 2x and 4x MLPs, respectively.
Reward Training: We take a random sample ensemble strategy
to train our TreeReward. Specifically, we first randomly sampled
a data point(pair-wise form) from the collected feedback dataset.
Then, a reward path is chosen from the root of TreeReward to the
leaf node according to the annotated dimension. The target is to
train the model to reward the sample correctly along this path,
which consists of the internal and leaf node training objectives.
Formally, for the internal nodes,

Linternal(0) = CE(g, G(x)). 4

Here, G(-) represents the predicted logits of the internal node, and
g is the target internal reward label determined by the selected data
point, CE represents the cross-entropy loss. This objective aims to
let the model know which aspect to reward when given a text-image
pair. For the leaf node, we expect the leaf node to output the correct
reward score. We take a similar way with E.q.2 to optimize the
leaf node along a particular reward dimension. Specifically, for the
j-th reward local leaf node denoted as R/, the preference feedback
reward data pair is represented as (x,y, x7). The loss function for
the leaf node can be formulated as:

Liea (8) = —E(xw, x1) ~ Dj[log(a(ry(xw)) = o(rg(xp))]. (5)

where ré (x.) is the scalar reward predicted by the j-th leaf node,
D/ represents the corresponding fine-grained reward dataset, o is
the sigmoid function. The complete loss for training TreeReward is
defined as:

L(O)rm = Linterna1(0) + Lleaf(9)~ (6)
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Table 2: The quantitative results between the SOTA model
and ours in clip and aesthetic score. Among them, * means
that the model fine-tuned with JourneyDB.

Model CLIP Score Aesthetic Score
SD1.5 25.60 541
SD1.5+ImageReward 26.20 5.55
SD1.5+TreeReward 26.70 5.62
SD1.5* 26.60 5.89
SD1.5*+ImageReward 26.90 5.90
SD1.5*+TreeReward 27.40 5.96
SDXL 27.28 5.69
SDXL+ImageReward 27.35 5.66
SDXL+TreeReward 27.39 5.84

It is worth noting that we only optimize one particular path in
the TreeReward according to the source of the feedback data for
each time, and leave the parameters of other nodes unchanged.
However, with the random training data sampling, the parameters
of the whole tree will be fully optimized.

5.2 TreeReward Feedback Learning

We adopt the direct preference fine-tuning[44] to exploit the reward
score derived from our TreeReward to fine-tune the diffusion model
adaptively. Specifically, given prompt and generated image pair (y;,
xj), we start from the root node, and first calculate the internal
node logits and obtain the reward weights wy, for the global reward
aspect. Formally, we have:

eCb (xi,yi) e~ Tk (xuyi)

wp = Wi (7)

> €0 (x0.y:)” - S e~k (xiyi)

where Gg(x) with b € {semantic, aesthetic} represents the pre-
diction output of the internal node, and wy, is the reward weight
of along these two aspects. Next, we obtain all the fine-grained
reward scores on the leaf node and compute the adaptive weight
of each leaf node wy under the internal node, where k is the leaf
node under an internal node. The final reward R is obtained by
combining the rewards hierarchically from the root to the leaf:

M Ny
Rer (yi, 90 (i) = Z wp Z wi - (i, Yi),
b=0 k=0
where N, is the number of reward leaf nodes under the internal
node b, and M is the number of internal nodes. By combining the
fine-grained rewards from all nodes, our model can adaptively focus
on the reward dimensions that have not been well optimized yet,
providing case-tailored preference feedback for the diffusion model
via:

®

Lreward = Byi ~y [=Rer (x1,y3)] - 9)
Following [44], we also incorporate the naive diffusion pretrain
loss as a regularization term:

Lypretrain = E(y,x;)~D (ES(xi),y,-,e~N(0,1),t [lle - eg(zirt, fa(yi))||§]) .

(10)
Therefore, the final training objective is:
L= Lpretrain + ALrewards (11)

where A is the loss weight and is set to 0.05 by default.
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6 Experiments

6.1 Implementation Details

Dataset and Training Setting. We utilize the collected fine-grained
preference data to train our TreeReward. We randomly sample a
prompt set(~10w) from DiffusionDB following [44] for preference
fine-tuning. We conduct experiments with Stable Diffusion v1.5
and Stable Diffusion XL base 1.0. Additionally, to validate the ef-
fectiveness and generalization of our method, we further utilize
the JourneyDB [27], a large-scale generated image dataset collected
from Midjourney, to fine-tune the base SD1.5 to acquire an improved
base diffusion model as our base model.

Evaluation Metrics. We employ the CLIP score[10](ViT-L 14)
and Aesthetic score(LAION[37] aesthetic predictor) to assess the
general performance of our method on prompt-following and the
aesthetic quality, respectively. In addition, we further evaluate the
fine-grained optimization performance via a comprehensive user
study. Specifically, we first curate 100 prompts for each dimension,
which are manually checked to ensure they describe the picture
most relevant to the corresponding fine-grained dimension. Subse-
quently, we ask 10 raters to score what degree the image generated
with these prompts by the optimized model is better than the one
generated by the original base model. The score spans from -5 to 5,
where 5 means the best and -5 represents the worst.

Table 3: ‘IR’: ImageReward. ‘TR’: TreeReward.

Setting Data Volume  Structure ~ Reward Nums
ImageReward 137K IR single
Data-Scale 2.2M IR single
Decouple 2.2M IR multiple
TreeReward (Ours) 2.2M TR single

6.2 Comparision with State-of-the-art

Qualitative Results. We compared our method with ImageRe-
ward, the current state-of-the-art SD preference modeling method.
It clearly shows that our method exhibits superior performance
for learning performance in both semantic alignment and aesthetic
quality enhancement. As shown in Fig.4, our method exhibits su-
perior overall visual quality. Take SD1.5 and the prompt of “A
dolphin leaps through the waves, set against a backdrop of bright
blues and teal hues” as an example, there are no dolphins in the
image generated by SD1.5. The dolphin generated by ImageReward
is too small and the waves are blurry. By contrast, both the waves
and dolphins generated by TreeReward are rich in detail and highly
realistic. As depicted in Fig.6, TreeReward also shows superior-
ity in generating images with better visual quality in various
fine-grained aspects. For example, only TreeReward generates
the correct result for prompt “a horse without a rider", while both
the base model and ImageReward generate the mismatched content
(The riders). And for prompt “A mountain retreat’s spa, zen-inspired,
... overlook forest views”, both SD1.5 and ImageReward present un-
reasonable layouts for the tables and swimming pool (Too small
tables and truncated swimming pool), while TreeReward displays
the more aesthetic layout. Note that the ImageReward does not
exhibit much improvement when applied to the improved stable
diffusion base model which is fine-tuned with JourneyDB. As a
comparison, Our TreeReward still delivers notable improvement,
which demonstrates the superiority of our method.
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A flag with a dinosaur on it, vector icon
Figure 4: Visual comparison of SOTA models. TreeReward has achieved more excellent results than other competitive methods.
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Decouple vs Data-Scale 44.0% 24.0% 32.0%

52.0% 14.0% 34.0%

Data-Scale vs ImageReward
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Figure 5: The user study to validate feedback data scaling up
and tree-structured reward design. The result is evaluated by

10 raters on the generation of 100 general prompts.

Quantitative results. To evaluate the performance of our method
quantitatively, we conducted comparisons using CLIP scores and
aesthetic scores, which provide metrics for semantic alignment
and aesthetic quality, respectively. The results are presented in
Tab. 2. It demonstrates that our method outperforms the baseline
model in both semantic alignment and aesthetic quality and also
surpasses the performance of ImageReward. For instance, on SD1.5,
our method achieved a 2% improvement in semantic alignment com-
pared to ImageReward, along with a 1.2% enhancement in aesthetic
quality. These results indicate the superiority of our method in
generating images that are not only visually appealing but also se-
mantically aligned. It is worth emphasizing that the score achieved
by the SD1.5 model with fine-tuning using journey-db data is higher
than that of the SDXL model. This observation underscores the
significance of utilizing high-quality fine-tuned data to enhance
model performance. Moreover, the fine-grained evaluation is pre-
sented in the radar char in Fig.1. It is evident that our TreeReward
feedback learning approach significantly outperforms the ImageRe-
ward across all the dimensions. Remarkably, our TreeReward ap-
proach demonstrates a notable enhancement of 1.5 points in the
‘Color’ dimension when compared to the ImageReward method on
SD1.5. Moreover, when applied on JourneyDB-tuned SD1.5, our
TreeReward approach still showcases a significant improvement of
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2.2 points in the ‘Detail’ dimension, surpassing the ImageReward
model by a substantial margin.

6.3 Ablation Study

We have conducted a series of ablation experiments to showcase the
key contributions of our method, specifically the fine-grained feed-
back data scaling and the design and tree-structured reward fine-
tuning. These experiments encompass several settings: (i) "Data-
Scale": We employ the same reward model as ImageReward but
utilize our collected feedback data for training the reward model
without distinguishing the different fine-grained dimensions. (ii)
"Decouple": Instead of training a single reward model, we train
separate reward models for each fine-grained dimension using our
feedback data and utilize these models for preference fine-tuning
simultaneously. (iii) "ImageReward": Preference fine-tuning using
the reward model provided by ImageReward. (iv) "TreeReward":
Preference fine-tuning using the reward model provided by our
TreeReward approach. The detailed comparison between these
settings is presented in Tab.3. As illustrated in Fig.5, incorporat-
ing more feedback data significantly enhances the performance of
preference fine-tuning, resulting in an impressive increase of 18%
compared to the naive ImageReward approach. This finding under-
scores the importance of gathering a larger quantity of high-quality
feedback data, even without considering fine-grained distinctive-
ness. Building upon this, the decoupling of the reward model for
different fine-grained dimensions leads to a further improvement
(44% vs 32%). This demonstrates the necessity of the decoupled
reward model design, which effectively eliminates potential con-
flicts in preference tuning as analyzed in [41]. However, training
multiple reward models not only results in memory inefficiency
but also achieves sub-optimal multiple reward fine-tuning. In com-
parison, our TreeReward approach leverages fine-grained feedback
data hierarchically and rewards in an adaptive manner, offering
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SD1.5*+
TreeReward

SD1.5*+
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a horse without a rider

Style
A retro-futuristic sci-fi
book cover featuring a
spaceship soaring through
a cosmic landscape.

Color

A coastal town during a
sunrise, where warm ochre
buildings contrast with the

azure tones of the sea.

Lighting
Fireflies twinkle in a
moonlit meadow, creating

a magical dance of light
and shadow.

Detail

A leather-bound journal

with embossed covers and

creamy pages, inviting the
touch of a pen.

Layout

A mountain retreat's spa,
2en-inspired, with
massage tables positioned
to overlook forest views.

ImageReward

Figure 6: Visual comparison of each fine-grained dimension. * means that the model fine-tuned with JourneyDB.

Task: DreamBooth
Target: IP Preservation

Task: LORA
Target: Style Transfer

Target IP

SDL5

Ours

Ours

sDLS

a dog painting A monster standing on street

Task: ControlNet
Target: Controllable Generation

Task: Image-to-Image
Target: Reference Generation

Control Condition

sDLS
A man,3DCG style

SDLS
a cartoon style house

Figure 7: Comparison of visual results on the downstream task with SD1.5 and SD1.5 optimized by our method.

greater flexibility and delivering superior performance compared
to naive fine-tuning with multiple reward models (54% vs 35%).
By incorporating these two improvements, our method ultimately
achieves a 32% increase in user preference compared to ImageRe-
ward, highlighting the significant advantages of our approach.

6.4 Generalization Study

We conduct an extensive study to evaluate the generalization poten-
tial of our method in adapting to various downstream tasks, such
as LORA [12], DreamBooth [34], Image-to-Image[22], and Control-
Net [53]. As illustrated in Fig.7, our model showcases remarkable
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compacity in style learning, IP preservation, reference generation,
and controllable generation.

7 Conclusion

We propose TreeReward, an effective method to achieve fine-grained
feedback learning for the diffusion model. It includes an efficient
"Al + Expert" fine-grained feedback data construction pipeline,
and a tree-structured reward model to impose fine-grained, multi-
dimensional, and adaptive reward feedback tuning. Extensive exper-
iments on both SD1.5 and SDXL models demonstrate the superiority
of our method in both boosting the general quality and fine-grained
generation and at the same exhibiting excellent generalization.
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